Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative metabolomics analysis reveals different metabolic responses to drought in tolerant and susceptible poplar species.

Identifieur interne : 000509 ( Main/Exploration ); précédent : 000508; suivant : 000510

Comparative metabolomics analysis reveals different metabolic responses to drought in tolerant and susceptible poplar species.

Auteurs : Huixia Jia [République populaire de Chine] ; Lijuan Wang [République populaire de Chine] ; Jianbo Li [République populaire de Chine] ; Pei Sun [République populaire de Chine] ; Mengzhu Lu [République populaire de Chine] ; Jianjun Hu [République populaire de Chine]

Source :

RBID : pubmed:31637725

Descripteurs français

English descriptors

Abstract

Drought is one of the critical factors limiting tree growth and survival. Clarifying the adaptation to drought will facilitate the cultivation of drought-tolerant varieties. Metabolites, as direct signatures of biochemical functions, can uncover the biochemical pathways involved in drought responses. Here, we investigated the physiological and metabolic responses of drought-tolerant Populus simonii and drought-susceptible Populus deltoides cv. 'Danhong' to drought. Under drought conditions, P. simonii grew better and had a higher photosynthetic rate than P. deltoides cv. 'Danhong'. Global untargeted metabolite profiling was analyzed using gas chromatography time-of-flight mass spectrometry system. A total of 69 and 53 differentially accumulated metabolites were identified in drought-stressed P. simonii and P. deltoides cv. 'Danhong', respectively. The metabolisms of carbohydrate, amino acid, lipid and energy were involved in the drought responses common to both poplar species. The citric acid cycle was significantly inhibited to conserve energy, whereas multiple carbohydrates acting as osmolytes and osmoprotectants were induced to alleviate the adverse effects of drought stress. Unlike P. deltoides cv. 'Danhong', P. simonii underwent a specific metabolic reprogramming that enhanced non-enzymatic antioxidants, coordinated the cellular carbon/nitrogen balance and regulated wax biosynthesis. These results provide a reference for characterizing the mechanisms involved in poplar response to drought and for enhancing the drought tolerance of forest trees.

DOI: 10.1111/ppl.13036
PubMed: 31637725


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative metabolomics analysis reveals different metabolic responses to drought in tolerant and susceptible poplar species.</title>
<author>
<name sortKey="Jia, Huixia" sort="Jia, Huixia" uniqKey="Jia H" first="Huixia" last="Jia">Huixia Jia</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lijuan" sort="Wang, Lijuan" uniqKey="Wang L" first="Lijuan" last="Wang">Lijuan Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jianbo" sort="Li, Jianbo" uniqKey="Li J" first="Jianbo" last="Li">Jianbo Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300</wicri:regionArea>
<wicri:noRegion>102300</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Pei" sort="Sun, Pei" uniqKey="Sun P" first="Pei" last="Sun">Pei Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Mengzhu" sort="Lu, Mengzhu" uniqKey="Lu M" first="Mengzhu" last="Lu">Mengzhu Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jianjun" sort="Hu, Jianjun" uniqKey="Hu J" first="Jianjun" last="Hu">Jianjun Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31637725</idno>
<idno type="pmid">31637725</idno>
<idno type="doi">10.1111/ppl.13036</idno>
<idno type="wicri:Area/Main/Corpus">000654</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000654</idno>
<idno type="wicri:Area/Main/Curation">000654</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000654</idno>
<idno type="wicri:Area/Main/Exploration">000654</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative metabolomics analysis reveals different metabolic responses to drought in tolerant and susceptible poplar species.</title>
<author>
<name sortKey="Jia, Huixia" sort="Jia, Huixia" uniqKey="Jia H" first="Huixia" last="Jia">Huixia Jia</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lijuan" sort="Wang, Lijuan" uniqKey="Wang L" first="Lijuan" last="Wang">Lijuan Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jianbo" sort="Li, Jianbo" uniqKey="Li J" first="Jianbo" last="Li">Jianbo Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300</wicri:regionArea>
<wicri:noRegion>102300</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Pei" sort="Sun, Pei" uniqKey="Sun P" first="Pei" last="Sun">Pei Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Mengzhu" sort="Lu, Mengzhu" uniqKey="Lu M" first="Mengzhu" last="Lu">Mengzhu Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jianjun" sort="Hu, Jianjun" uniqKey="Hu J" first="Jianjun" last="Hu">Jianjun Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Physiologia plantarum</title>
<idno type="eISSN">1399-3054</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Metabolome (MeSH)</term>
<term>Metabolomics (MeSH)</term>
<term>Photosynthesis (MeSH)</term>
<term>Populus (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (MeSH)</term>
<term>Métabolome (MeSH)</term>
<term>Métabolomique (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
<term>Populus (métabolisme)</term>
<term>Stress physiologique (MeSH)</term>
<term>Sécheresses (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Droughts</term>
<term>Metabolome</term>
<term>Metabolomics</term>
<term>Photosynthesis</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Métabolome</term>
<term>Métabolomique</term>
<term>Photosynthèse</term>
<term>Stress physiologique</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Drought is one of the critical factors limiting tree growth and survival. Clarifying the adaptation to drought will facilitate the cultivation of drought-tolerant varieties. Metabolites, as direct signatures of biochemical functions, can uncover the biochemical pathways involved in drought responses. Here, we investigated the physiological and metabolic responses of drought-tolerant Populus simonii and drought-susceptible Populus deltoides cv. 'Danhong' to drought. Under drought conditions, P. simonii grew better and had a higher photosynthetic rate than P. deltoides cv. 'Danhong'. Global untargeted metabolite profiling was analyzed using gas chromatography time-of-flight mass spectrometry system. A total of 69 and 53 differentially accumulated metabolites were identified in drought-stressed P. simonii and P. deltoides cv. 'Danhong', respectively. The metabolisms of carbohydrate, amino acid, lipid and energy were involved in the drought responses common to both poplar species. The citric acid cycle was significantly inhibited to conserve energy, whereas multiple carbohydrates acting as osmolytes and osmoprotectants were induced to alleviate the adverse effects of drought stress. Unlike P. deltoides cv. 'Danhong', P. simonii underwent a specific metabolic reprogramming that enhanced non-enzymatic antioxidants, coordinated the cellular carbon/nitrogen balance and regulated wax biosynthesis. These results provide a reference for characterizing the mechanisms involved in poplar response to drought and for enhancing the drought tolerance of forest trees.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31637725</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1399-3054</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>168</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Physiologia plantarum</Title>
<ISOAbbreviation>Physiol Plant</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative metabolomics analysis reveals different metabolic responses to drought in tolerant and susceptible poplar species.</ArticleTitle>
<Pagination>
<MedlinePgn>531-546</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/ppl.13036</ELocationID>
<Abstract>
<AbstractText>Drought is one of the critical factors limiting tree growth and survival. Clarifying the adaptation to drought will facilitate the cultivation of drought-tolerant varieties. Metabolites, as direct signatures of biochemical functions, can uncover the biochemical pathways involved in drought responses. Here, we investigated the physiological and metabolic responses of drought-tolerant Populus simonii and drought-susceptible Populus deltoides cv. 'Danhong' to drought. Under drought conditions, P. simonii grew better and had a higher photosynthetic rate than P. deltoides cv. 'Danhong'. Global untargeted metabolite profiling was analyzed using gas chromatography time-of-flight mass spectrometry system. A total of 69 and 53 differentially accumulated metabolites were identified in drought-stressed P. simonii and P. deltoides cv. 'Danhong', respectively. The metabolisms of carbohydrate, amino acid, lipid and energy were involved in the drought responses common to both poplar species. The citric acid cycle was significantly inhibited to conserve energy, whereas multiple carbohydrates acting as osmolytes and osmoprotectants were induced to alleviate the adverse effects of drought stress. Unlike P. deltoides cv. 'Danhong', P. simonii underwent a specific metabolic reprogramming that enhanced non-enzymatic antioxidants, coordinated the cellular carbon/nitrogen balance and regulated wax biosynthesis. These results provide a reference for characterizing the mechanisms involved in poplar response to drought and for enhancing the drought tolerance of forest trees.</AbstractText>
<CopyrightInformation>© 2019 Scandinavian Plant Physiology Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jia</LastName>
<ForeName>Huixia</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-7936-4987</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Lijuan</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jianbo</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Pei</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Mengzhu</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Jianjun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2018M631625</GrantID>
<Agency>China Postdoctoral Science Foundation</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31570669</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>CAFYBB2017ZY008</GrantID>
<Agency>National Nonprofit Institute Research Grant of Chinese Academy of Forestry</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>CAFYBB2018ZY001-9</GrantID>
<Agency>National Nonprofit Institute Research Grant of Chinese Academy of Forestry</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Denmark</Country>
<MedlineTA>Physiol Plant</MedlineTA>
<NlmUniqueID>1256322</NlmUniqueID>
<ISSNLinking>0031-9317</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Physiol Plant. 2020 Mar;168(3):529-530</RefSource>
<PMID Version="1">32105358</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055442" MajorTopicYN="Y">Metabolome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055432" MajorTopicYN="N">Metabolomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>06</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>10</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31637725</ArticleId>
<ArticleId IdType="doi">10.1111/ppl.13036</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Albert GG, Jordi S, Míriam PT, Michal O, Otmar U, Anke J, Juergen K, Carl B, Teodor P, Penuelas J (2015) Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots. New Phytol 207: 591-603</Citation>
</Reference>
<Reference>
<Citation>Barchet GL, Dauwe R, Guy RD, Schroeder WR, Soolanayakanahally RY, Campbell MM, Mansfield SD (2013) Investigating the drought-stress response of hybrid poplar genotypes by metabolite profiling. Tree Physiol 34: 1203-1219</Citation>
</Reference>
<Reference>
<Citation>Barnaby JY, Kim M, Bauchan G, Bunce J, Reddy V, Sicher RC (2013) Drought responses of foliar metabolites in three maize hybrids differing in water stress tolerance. PLoS One 8: e77145</Citation>
</Reference>
<Reference>
<Citation>Bowne JB, Erwin TA, Juttner J, Schnurbusch T, Langridge P, Bacic A, Roessnera U (2012) Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant 5: 418-429</Citation>
</Reference>
<Reference>
<Citation>Cazzonelli CI (2011) Carotenoids in nature: insights from plants and beyond. Funct Plant Biol 38: 833-847</Citation>
</Reference>
<Reference>
<Citation>Chen S, Wang S, Altman A, Hüttermann A (1997) Genotypic variation in drought tolerance of poplar in relation to abscisic acid. Tree Physiol 17: 797-803</Citation>
</Reference>
<Reference>
<Citation>Chen J, Song Y, Zhang H, Zhang D (2013) Genome-wide analysis of gene expression in response to drought stress in Populus simonii. Plant Mol Biol Rep 31: 946-962</Citation>
</Reference>
<Reference>
<Citation>Coruzzi GM, Zhou L (2001) Carbon and nitrogen sensing and signaling in plants: emerging ‘matrix effects’. Curr Opin Plant Biol 4: 247-253</Citation>
</Reference>
<Reference>
<Citation>Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48: 355-381</Citation>
</Reference>
<Reference>
<Citation>Dawson TP, Jackson ST, House JI, Iain CP, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332: 53-58</Citation>
</Reference>
<Reference>
<Citation>Duan LX, Chen TL, Li M, Chen M, Zhou YQ, Cui GH, Zhao AH, Jia W, Huang LQ, Qi X (2012) Use of the metabolomics approach to characterize chinese medicinal material Huangqi. Mol Plant 5: 376-386</Citation>
</Reference>
<Reference>
<Citation>Fang L, Su L, Sun X, Li X, Sun M, Karungo SK, Fang S, Chu J, Li S, Xin H (2016) Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis. J Exp Bot 67: 2829-2845</Citation>
</Reference>
<Reference>
<Citation>Farrant JM, Lehner A, Cooper K, Wiswedel S (2010) Desiccation tolerance in the vegetative tissues of the fern Mohria caffrorum is seasonally regulated. Plant J 57: 65-79</Citation>
</Reference>
<Reference>
<Citation>Fernie AR, Martinoia E (2009) Malate. Jack of all trades or master of a few? Phytochemistry 70: 828-832</Citation>
</Reference>
<Reference>
<Citation>Frelin O, Dervinis C, Wegrzyn JL, Davis JM, Hanson AD (2017) Drought stress in Pinus taeda L. induces coordinated transcript accumulation of genes involved in the homogentisate pathway. Tree Genet Genomes 13: 27</Citation>
</Reference>
<Reference>
<Citation>Guo R, Shi LX, Yang J, Li MX, Zhong XL, Gu FX, Liu Q, Xia X, Li HR (2018) Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings. AoB Plants 10: 1-13</Citation>
</Reference>
<Reference>
<Citation>Hamanishi ET, Barchet GL, Dauwe R, Mansfield SD, Campbell MM (2015) Poplar trees reconfigure the transcriptome and metabolome in response to drought in a genotype- and time-of-day-dependent manner. BMC Genomics 16: 329</Citation>
</Reference>
<Reference>
<Citation>Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6: 431-438</Citation>
</Reference>
<Reference>
<Citation>Huda KM, Banu MS, Garg B, Tula S, Tuteja R, Tuteja N (2013) OsACA6, a P-type IIB Ca2+ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes. Plant J 76: 997-1015</Citation>
</Reference>
<Reference>
<Citation>Jan L, Nicolas S, Joachim K, Lothar W, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1: 387-396</Citation>
</Reference>
<Reference>
<Citation>Javier SM, Jim H, Alison KS, Ana W, Diego R, Mariluz S, Luis AJ, Elena P (2015) A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based on salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism. Plant Cell Environ 38: 1434-1452</Citation>
</Reference>
<Reference>
<Citation>Kalamaki MS, Georgios M, Kanellis AK (2009) Can ornithine accumulation modulate abiotic stress tolerance in Arabidopsis? Plant Signal Behav 4: 1099-1101</Citation>
</Reference>
<Reference>
<Citation>Kang J, Frank T (2003) The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc Natl Acad Sci U S A 100: 6872-6877</Citation>
</Reference>
<Reference>
<Citation>Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20: 219-229</Citation>
</Reference>
<Reference>
<Citation>Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A (2007) Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J Exp Bot 58: 415-424</Citation>
</Reference>
<Reference>
<Citation>Kim S, To TK, Matsui A, Tanoi K, Kobayashi NI, Matsuda F, Habu Y, Ogawa D, Sakamoto T, Matsunaga S, Bashir K, Rasheed S, Ando M, Takeda H, Kawaura K, Kusano M, Fukushima A, Endo TA, Kuromori T, Ishida J, Morosawa T, Tanaka M, Torii C, Takebayashi Y, Sakakibara H, Ogihara Y, Saito K, Shinozaki K, Devoto A, Seki M (2017a) Acetate-mediated novel survival strategy against drought in plants. Nat Plants 3: 17097</Citation>
</Reference>
<Reference>
<Citation>Kim YH, Khan AL, Waqas M, Lee IJ (2017b) Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Front Plant Sci 8: 510</Citation>
</Reference>
<Reference>
<Citation>Kruse O, Rupprecht J, Mussgnug JH, Dismukesc C, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4: 957-969</Citation>
</Reference>
<Reference>
<Citation>Less H, Galili G (2008) Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol 147: 316-330</Citation>
</Reference>
<Reference>
<Citation>Li B, Qin Y, Duan H, Yin W, Yin W (2011) Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot 62: 3765-3779</Citation>
</Reference>
<Reference>
<Citation>Liming Y, Fountain JC, Hui W, Xinzhi N, Pingsheng J, Lee RD, Kemerait RC, Scully BT, Baozhu GJ (2015) Stress sensitivity is associated with differential accumulation of reactive oxygen and nitrogen species in maize genotypes with contrasting levels of drought tolerance. Int J Mol Sci 16: 24791-24819</Citation>
</Reference>
<Reference>
<Citation>Mata AT, Jorge TF, Pires MV, Antonio C (2016) Drought Stress Tolerance in Plants: Insights from Metabolomics. In: Hossain M, Wani S, Bhattacharjee S, Burritt D, Tran LS (ed) Drought Stress Tolerance in Plants, 1st Edn, Vol. 2. Spr Int Publishing, Cham, Switzerland, pp 187-216</Citation>
</Reference>
<Reference>
<Citation>Melis A (2013) Carbon partitioning in photosynthesis. Curr Opin Chem Biol 17: 453-456</Citation>
</Reference>
<Reference>
<Citation>Meng S, Zhang C, Su L, Li Y, Zhao Z (2016) Nitrogen uptake and metabolism of Populus simonii in response to PEG-induced drought stress. Environ Exp Bot 123: 78-87</Citation>
</Reference>
<Reference>
<Citation>Mibei EK, Ambuko J, Giovannoni JJ, Onyango AN, Owino WO (2017) Carotenoid profiling of the leaves of selected African eggplant accessions subjected to drought stress. Food Sci Nutr 5: 113-122</Citation>
</Reference>
<Reference>
<Citation>Michaletti A, Naghavi MR, Toorchi M, Zolla L, Rinalducci S (2018) Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci Rep 8: 5710</Citation>
</Reference>
<Reference>
<Citation>Mikami K, Murata N (2003) Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog Lipid Res 42: 527-543</Citation>
</Reference>
<Reference>
<Citation>Mukherjee D, Mukherjee A, Ghosh TC (2015) Evolutionary rate heterogeneity of primary and secondary metabolic pathway genes in Arabidopsis thaliana. Genome Biol Evol 8: 17-28</Citation>
</Reference>
<Reference>
<Citation>Nawrath C, Poirier Y (2008) Pathways for the synthesis of polyesters in plants: cutin, suberin, and polyhydroxyalkanoates. Adv Plant Bioch Mol Biol Evol 1: 201-239</Citation>
</Reference>
<Reference>
<Citation>Nicoletta B, Barbara B, Chiara B (2005) Modulation of reactive oxygen species production during osmotic stress in Arabidopsis thaliana cultured cells: involvement of the plasma membrane Ca2+-ATPase and H+-ATPase. Plant Cell Physiol 46: 1326-1339</Citation>
</Reference>
<Reference>
<Citation>Noman A, Ali S, Naheed F, Ali Q, Farid M, Rizwan M, Irshad MK (2015) Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Arch Agron Soil Sci 61: 14</Citation>
</Reference>
<Reference>
<Citation>Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69: 3225-3243</Citation>
</Reference>
<Reference>
<Citation>Okazaki Y, Saito K (2014) Roles of lipids as signaling molecules and mitigators during stress response in plants. Plant J 79: 584-596</Citation>
</Reference>
<Reference>
<Citation>Pichersky E, Lewinsohn E (2011) Convergent evolution in plant specialized metabolism. Annu Rev Plant Biol 62: 549-566</Citation>
</Reference>
<Reference>
<Citation>Rabara RC, Tripathi P, Rushton PJ (2017) Comparative metabolome profile between tobacco and soybean grown under water-stressed conditions. Biomed Res Int 3065251: 1-12</Citation>
</Reference>
<Reference>
<Citation>Rancourt GT, Éthier G, Pepin S (2015) Greater efficiency of water use in poplar clones having a delayed response of mesophyll conductance to drought. Tree Physiol 35: 172-184</Citation>
</Reference>
<Reference>
<Citation>Saeed A, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34: 374-378</Citation>
</Reference>
<Reference>
<Citation>Sánchez-Martín J, Heald J, Kingston-Smith A, Winters A, Rubiales D, Sanz M, Mur LA, Prats EA (2015) Metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based on salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism. Plant Cell Environ 38: 1434-1452</Citation>
</Reference>
<Reference>
<Citation>Sánchez-Romera B, Ruiz-Lozano JM, Li G, Luu DT, Martínez-Ballesta MC, Carvajal M (2014) Enhancement of root hydraulic conductivity bymethyl jasmonate and the role of calcium and abscisic acid in this process. Plant Cell Environ 37: 995-1008</Citation>
</Reference>
<Reference>
<Citation>Schittenhelm S, Schroetter S (2014) Comparison of drought tolerance of maize, sweet sorghum and sorghum-sudangrass hybrids. J Agron Crop Sci 200: 46-53</Citation>
</Reference>
<Reference>
<Citation>Shabala S, Baekgaard L, Shabala L, Fuglsang A, Babourina O, Palmgren MG, Cuin TA, Rengel Z, Nemchinov LG (2010) Plasma membrane Ca2+ transporters mediate virus-induced acquired resistance to oxidative stress. Plant Cell Environ 34: 406-417</Citation>
</Reference>
<Reference>
<Citation>Shi Y, Yue X, An L (2018) Integrated regulation triggered by a cryophyte ω-3 desaturase gene confers multiple-stress tolerance in tobacco. J Exp Bot 69: 2131-2148</Citation>
</Reference>
<Reference>
<Citation>Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58: 221-227</Citation>
</Reference>
<Reference>
<Citation>Shulaeva V, Cortesa D, Millerb G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132: 199-208</Citation>
</Reference>
<Reference>
<Citation>Skirycz A, Bodt SD, Obata T, Clercq ID, Claeys H, Rycke RD, Andriankaja M, Aken OV, Breusegem FV, Alisdair F (2010) Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress. Plant Physiol 152: 226-244</Citation>
</Reference>
<Reference>
<Citation>Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125: 27-58</Citation>
</Reference>
<Reference>
<Citation>Steven JF (2011) Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytol 190: 249-257</Citation>
</Reference>
<Reference>
<Citation>Sun C, Gao X, Chen X, Fu J, Zhang Y (2016) Metabolic and growth responses of maize to successive drought and re-watering cycles. Agr Water Manage 172: 62-73</Citation>
</Reference>
<Reference>
<Citation>Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Ali E, Fahad S (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut R 25: 33103-33118</Citation>
</Reference>
<Reference>
<Citation>Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30: 967-977</Citation>
</Reference>
<Reference>
<Citation>Vicent A, Matías M, De OC, Aurelio GC (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14: 4885-4911</Citation>
</Reference>
<Reference>
<Citation>Wang L, Qu L, Zhang L, Hu J, Fang T, Lu M (2016) Metabolic responses of poplar to Apripona germari (hope) as revealed by metabolite profiling. Int J Mol Sci 17: 923</Citation>
</Reference>
<Reference>
<Citation>Wang L, Qu L, Hu J, Zhang L, Fang T, Lu M (2017) Metabolomics reveals constitutive metabolites that contribute resistance to fall webworm (Hyphantria cunea) in Populus deltoides. Environ Exp Bot 136: 31-40</Citation>
</Reference>
<Reference>
<Citation>Wei Z, Du Q, Zhang J, Li B, Zhang D (2013) Genetic diversity and population structure in chinese indigenous poplar (Populus simonii) populations using microsatellite markers. Plant Mol Biol Rep 31: 620-632</Citation>
</Reference>
<Reference>
<Citation>Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino-Mayer HD (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Change 3: 292-297</Citation>
</Reference>
<Reference>
<Citation>Yamada T, Matsuda F, Kasai K, Fukuoka S, Kitamura K, Tozawa Y, Miyagawa H, Wakasa K (2008) Mutation of a rice gene encoding a phenylalanine biosynthetic enzyme results in accumulation of phenylalanine and tryptophan. Plant Cell 20: 1316-1329</Citation>
</Reference>
<Reference>
<Citation>Yang F, Wang Y, Miao L (2010) Comparative physiological and proteomic responses to drought stress in two poplar species originating from different altitudes. Physiol Plant 139: 388-400</Citation>
</Reference>
<Reference>
<Citation>Yang L, Fountain JC, Ji P, Ni X, Chen S, Lee RD, Kemerait RC, Guo B (2018) Deciphering drought-induced metabolic responses and regulation in developing maize kernels. Plant Biotechnol J 16: 1616-1628</Citation>
</Reference>
<Reference>
<Citation>Yin C, Duan B, Wang X, Li C (2004) Morphological and physiological responses of two contrasting poplar species to drought stress and exogenous abscisic acid application. Plant Sci 167: 1091-1097</Citation>
</Reference>
<Reference>
<Citation>Ying YQ, Song LL, Jacobs DF, Mei L, Liu P, Jin SH, Wu JS (2015) Physiological response to drought stress in Camptotheca acuminata seedlings from two provenances. Front Plant Sci 6: 361</Citation>
</Reference>
<Reference>
<Citation>Zhang C, Li S, Zhao Z, Hu J, Han Y (2008) A new poplar variety Populus deltoides CL. ‘Danhong’. Scientia Silvae Sinicae 44: 1</Citation>
</Reference>
<Reference>
<Citation>Zhang M, Barg R, Yin M, Gueta-Dahan Y, Leikin-Frenkel A, Salts Y, Shabtai S, Ben-Hayyim G (2010) Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J 44: 361-371</Citation>
</Reference>
<Reference>
<Citation>Zhang J, Chen G, Zhao P, Zhou Q, Zhao X (2017) The abundance of certain metabolites responds to drought stress in the highly drought tolerant plant Caragana korshinskii. Acta Physiol Plant 39: 116</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Jia, Huixia" sort="Jia, Huixia" uniqKey="Jia H" first="Huixia" last="Jia">Huixia Jia</name>
</noRegion>
<name sortKey="Hu, Jianjun" sort="Hu, Jianjun" uniqKey="Hu J" first="Jianjun" last="Hu">Jianjun Hu</name>
<name sortKey="Li, Jianbo" sort="Li, Jianbo" uniqKey="Li J" first="Jianbo" last="Li">Jianbo Li</name>
<name sortKey="Lu, Mengzhu" sort="Lu, Mengzhu" uniqKey="Lu M" first="Mengzhu" last="Lu">Mengzhu Lu</name>
<name sortKey="Sun, Pei" sort="Sun, Pei" uniqKey="Sun P" first="Pei" last="Sun">Pei Sun</name>
<name sortKey="Wang, Lijuan" sort="Wang, Lijuan" uniqKey="Wang L" first="Lijuan" last="Wang">Lijuan Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000509 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000509 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31637725
   |texte=   Comparative metabolomics analysis reveals different metabolic responses to drought in tolerant and susceptible poplar species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31637725" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020